OWASP 2022 iE/
@ VIRTUAL J
™ /\PPSEC TESTABLE

JUN6-10

PRESENTED BY: Soheil Khodayari

Everything You Wanted to Know
About Client-side CSRF (But Were

OWASP 2022
@ VIRTUAL
. N\PPS=C

JUN6-10

About Me

Soheil Khodayari

PhD Candidate @CISPA, Germany (2019 — Present)
Web Security, Program Analysis

Double MSc. in Computer Science (2017-2019)

* Polytechnic University of Madrid - Technical University of Kaiserslautern
* R&D Engineer @IMDEA, Madrid

Publications in NDSS, USENIX Security, IEEE S&P, RAID

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Web Applications Testability

« We know that webapp vulnerability detection is critical @ -
e Over 4.8 billion websites online, 1.8 billion users 1 - v
» Contain a variety of security-sensitive data Banking Shopping Education
« The complexity of webapps are rising Webapp CVEs By Year (2]
Problem:

/\ Existing vulnerability detection tools fall short of capturing this complexity

S HF PP EE S ®S O B > e o AR 2 D g
S ST S T T TS T T 5 S ST ST T T T

Sources:
! internetlivestats.com
2 nvd.nist.gov
Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

(But Were Afraid to Ask)

@ VIRTUAL Everything You Wanted to K About Client-side CSRF
VlRTU/\L verything You Wanted to Know About Client-side

. \PPS=C

JUN6-10

Cross-Site Request Forgery (CSRF)

Victim attack.com bank.com
)

© +rees) © 1ees) WRITE
» > _——— =

. ST =

<script src=
“https://bank.com/transfer?amt=1000&

to=attacker”> @

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Cross-Site Request Forgery (CSRF)

Do we know how to solve the CSRF attacks? %}5

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

OWASP 2022
@ VIRTUAL
. N\PPS=C

JUN6-10

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Anti-CSRF Defenses

Q Robust CSRF defenses are well-known

Victim i attack.com : bank.com
S ! S
g ie HTTP(S) | r:ﬁ © Hrees) ﬁ WRITE @
—> ——— > _————
1 1 1 \/p/(;\'\‘-\f\ I
R i N @ EL —

<script src=

to=attacker”>

“https://bank.com/transfer?amt=1000& ‘

Origin Checks
Referrer/Origin Check

Custom Request Headers

Req. Unguessability
Plain Token

HMAC Token
Double/Triple Submit

Cookie-less User Sessions

SOP for Cookies
SameSite Cookies
Freq. Log Outs (server)
Browser Extensions

Server-side Proxies

User Intention
Re-authentication
One-Time Token

(re)CAPTCHA

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 6

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Anti-CSRF Defenses

With these defenses properly implemented, are CSRF attacks solved? %?

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 7

VIRTUAL
» \PPS=C

JUN6-10

OWARSP 2022 i A :
Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Client-side CSRF: Vulnerability

Vulnerable Webpage Target Server

Attacker Victim bank.com bank.com

m O °© [o ¢
a° 4 ° [o &

1 l TOKEN ——

https://bank.com/ #1/ transfer?amt=1000&to=attacker]

var uri =|window. location.hash.substr(1);

(uri.length > 0) {

uri = + uri;

let req = new (, uri);

req.setBody ([cerf_roken : "XsRE-TokEN']);

Root Cause:

JavaScript progam uses attacker-controlled inputs to generate async HTTP requests

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 8

OWARSP 2022 ! J .
Vl RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Client-side CSRF: Problem Statement

Vulnerable Webpage Target Server
Attacker Victim bank.com bank.com

e Facebook in 2018 ‘% (1) =9 (2) E o

URL: bank.com/#/payload

* Limited knowledge about client-side CSRF.

* Objective: studying client-side CSRF vulnerabilities
* (RQ1) Prevalence of client-side CSRF in webapps?
* (RQ2) Exploitations for different attacker models?

* (RQ3) Degree of attacker control?

* E.g., path, query, domain, body

! Ssource: facebook.com/notes/996734990846339/ Soheil Khodayari - CISPA Helmholtz Center for Information Security | 9

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Static Analysis (to the Rescue)

« Javascript

* Event-driven language
* Prototype-based inheritance (no static class hierarchies)
* Runtime types, coercions (no static type checking)

Analysis of client-side JavaScript programs is not an easy task

* Challenges

* Inherent dynamic language features
« E.g,eval(),orsetTimeout () functions [S.H.Jensen, ISSTA'12]
* Pointer analysis (e.g., ThisExpressions like this.property) [S. Wei et. al., ECOOP'14], [B Stein et. al. PACMPL'19]
* Inter-procedural calls [G. Antal, SCAM'18]
* Minified scripts and obfuscated code

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 10

@ QLR 20 2 Everything You Wanted to Know About Client-side CSRF
VIRTUAL .

A (But Were Afraid to Ask)
. \PPS=C

JUN6-10

Static Analysis (Cont’d)

* Modeling JavaScript is not enough, code environment also matters
* ECMAScript standard library Around 250 abstract objects
* Browser APIs [S.H. Jensen, FSE'11] ECMAScript with 500 properties
and 200 functions
* HTML DOM tree ‘

* (Client-side Events

» JavaScript streaming programming model [S. Guarnieri et. al., USENIX"10] **'@

* Modern client-side libraries

(((

* Sweet on the outside, bitter on the inside [M. Madsen et. al., FSE'13] @ React g
jauery
* E.g., JQuery, Dojo, YUI, etc

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 11

OWASP 2022 Everything You Wanted to Know About Client-side C
VI RTU/\ L (But Were Afraid to I

. \PPS=C

JUN6-10

Client-side CSRF: Exemplifying Detection Challenges

 (C1) Event-based transfer of control
sendRequest() {

uri/ =|window. location.hash.substr(1)

* (C2) Dynamic web execution environment
[' lextLibraryHttpRequest{uri| ,{ method: "POST"
* (C3) Modelling shared third-party code tLibraryHttpR (uri] ,{ method: "POST" })

invoice|= document.querySelector('div') @

invoice.addEventListener('LoadInvoice', sendRequest)

showInvoicePrice() { @

invoice|= document.getElementById(‘invoice-id")
invoice.dispatchEvent(CustomEvent('LoadInvoice', {}))

b

showInvoicePrice() @

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

OWASP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Other General Challenges for CSRF

« Detection Challenges

« Support for modern scanning barriers, e.g., login Access

. Control
« Scalability and performance

Crawling
Agent

« Operational Challenges

« Side-effect free testing

« Security-relevant state changes

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

OWARSP 2022 ! J .
Vl RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Approach Overview: JAW
[SCAN ME |

]
B A
[=]ems
https://soheilkhodayari.github.io/JJAW

» Ascalable, graph-based framework for detection and exploratory
analysis of client-side CSRF vulnerabilities

(=]
=

e Components

* Data Collection
* Graph Construction
* Analysis Traversals

Data Collection Code HPG Construction Traversals Result
Seed URL Dt —- .
: - . Fod) Lib,) ; PR AP AR
. Crawler = == =p> - State Values CO‘_je . i e—> lera'ry Ty > Sy mbc?hc “ HPG - Analysis
: : »- | Normalization Detection Modeling : :
R Cod 1 — i = y ’: f———
lT\LT : N -~ Symbolic Model
HTTP(S) . State Values . «]
o i i HPG | e : :
I . Construction == > : s :
Graph (S— .

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

OWASP 2022 E thing You Wanted to K About Client-side CSRF
verything You Wanted to Know About Client-side
XIF,RPTéJ i\lé (But Were Afraid to Ask)

JUN6-10

Approach Overview: JAW

» Ascalable, graph-based framework for detection and exploratory W
analysis of client-side CSRF vulnerabilities ;

b -
K oy

[m]ges
https://soheilkhodayari.github.io/JAW

Components

* Data Collection
* Graph Construction
* Analysis Traversals

Data Collection HPG Construction

Seed URL
—>

Code Ll | Lib. .} Symbolic

- == = . State Values | o : :
p > Normalization Detection Modeling

I

-

T
Codegy, _ = ==——"—

Vo Symbolic Model
State Values HPG

[> :
ﬁ : Construction

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 15

@ OWASk 2022 Everything You Wanted to Know About Client-side CSRF
VIRTUAL .

A (But Were Afraid to Ask)
. \PPS=C

JUN6-10

JAW: Data Collection

. . oy SeedURL - DataCollection :
« Chrome-based crawler with Selenium n —) oge
. ata ——— .
« Enhanced with chrome extensions (Test Case) - Crawler |- - - ! State Values
R ererrrrre=r 5]
* Outputs: L)
* JavaScript Code l

* HTTP Requests and Responses

* Dynamically Fired Events

* Concrete snapshots of the global Window object
* window.document (DOM tree) = Dynamic Information

* window.localStorage

* window.document.cookie

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 16

OWASP 2022 E thing You Wanted to K About Client-side CSRF
verything You Wanted to Know About Client-side
ﬁ XI'—_)RI-_-)IEJ L\I(5 (But Were Afraid to Ask)

JUN6-10

Approach Overview: JAW
[SCAN ME |

https://soheilkhodayari.github.io/JAW

» Ascalable, graph-based framework for detection and exploratory
analysis of client-side CSRF vulnerabilities

e Components

 Data Collection (V)
* Graph Construction

* Analysis Traversals

Data Collection Coide HPG Construction Traversalls Result
Seed URL . Pt ——> .
'_»: . C d . Lb, = : : ------ e
. Crawler = == =p> State Values Code . = e—l> leraFy = Symbth * HPG - Analysis
- > Normalization Detection Modeling . =
. . J I e BT ' [— =
............................ : C i e :
lTiT : 2% N - Symbolic Model . : :
HTTP(S) . State Values : . U,
- HPG : = "
- Tmmme = T e - : :)
. . Construction E ; S, :
. Graph .

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 17

@ VIRTUAL Everything You Wanted to K About Client-side CSRF
VIRTLJ/\L verything You Wanted to Know About Client-side

A (But Were Afraid to Ask)
. \PPS=C

JUN6-10

Hybrid Property Graphs (HPGs): Building Blocks

* Code Representation (Static)
* Abstract Syntax Tree (AST)
* Control Flow Graph (CFG) CPG for C/C++

. , — CPG for PHP
* Program Dependence Graph (PDG) emaguehietal SEF A [Backes et al., EuroS&P’17]
* Inter-Procedural Call Graph (IPCG) —
* Event Registration, Dispatch and Dependency Graph (ERDDG) HPG for

JavaScript
* Semantic Types and Symbolic Models

» State Values (Dynamic) &

* Event Traces

* Environment Properties

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 18

OWARSP 2022 ! J .
Vl RTU /\ L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

HPGs: Event Registration, Dispatch and Dependency Graph (ERDDG)

* Problem:
» Event dispatches can change the state of JavaScript programs

* Need to be modeled

. Example Snippet:
* Solution: P pp

« The ERDDG btn = document.querySelector
h(e){

AsyncRequest(...); @

Type: Dispatch

4 btn.addEventListener(

btn addEventListener ‘ @

Type: Registration D AT @

Type: Dependency

AsyncRequest(...)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 19

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

HPGs: Symbolic Models and Semantic Types Propagation

» External libraries: over 60% of the total LoC of each webpage.

(&
Problem: _ak\;{ C@ React
* Existing approaches: Inefficient, include library code in the analysis Jauen :

HPG for lib.js Symbolic Model for lib.js

* Idea: Shared models for JavaScript libraries

<script src=“1lib.js”/>

window.location.href ‘ XMLHttpRequest()

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 20

OWASP 2022
VIRTUAL

Everything You Wanted to Know About Client-side CSRF
. N\PPS=C

(But Were Afraid to Ask)
JUN6-10

Hybrid Property Graph: Example

e - e .
Entry T 13 ' h e L10 Li4 L6 ‘ Exit
() { varoDpEcL { FDECL J}— [EXp.STMT —()
J S
(i] C_EXP

(prodpr | (inputid][BLOCK J\\'\{ CEXP |

calls: ‘input’
- document.querySelector('input’)

Evt Disp.

D n addEventListener

b e Dpr\(‘&
L8 N L9

{ varpECL |~ EXPSTMT |

L15

Code Representation -

(Static Part) Py

! f Y 7
(varpecL | { 1Fst™Mt | VARDECL | =

/
uri [CEXP |

MMBR_EXP

NEW_EXP

[C_EXP][dispatchEvent] [CustomEvent][’Io

uri
——— document.getElementByld(input_id)
windew.location.hash ~ NU e
i
- N
T -‘ window
State Va I u eS 2 E1: DOMContentLoaded E2: UlEvent Load E3: Event loadInvoice
"{ document ‘ ‘ location H localStorage H sessionStorage ‘ ‘ name Target: document Target: window Target: <input id="input’>
Dynamic Part) -+ - frace ey e
‘ #document H referer H cookie Traces: W
E4: Event load E4: Event load
<html>
i Target: asyncRequest Target: XMLHttpRequest
[—] <input id="input'> example.com/x example.com/y
X-CSRF-Token=A3XgT2 No payload

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 21

@

Approach Overview: JAW

OWASP 2022
VIRTUAL
ANPPS=C

JUN6-10

A scalable, graph-based framework for detection and exploratory

analysis of client-side CSRF vulnerabilities

Components

* Data Collection
* Graph Construction 0

o

* Analysis Traversals

Data Collection

Seed URL
—>

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. I

- -
. .

[m]es
https://soheilkhodayari.github.io/JAW

B

Code
Normalization

Detection

Symbolic

Modeling HPG

State Values

T
Code Va-—-—""""

HPG
Construction

o =

Symbolic Model

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 22

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Vulnerability Analysis

* Client-side CSRF

A. Data flow from an attacker-controlled input to a param of a request R.

* lines of code having both “URL” and semantic types.

B. Risreachable at page load.

* Model both conditions using declarative graph traversals

- QLMOAJ

Cypher Query Language

* A query Q contains all nodes n of HPG for which a predicate Pistrue: © = {n : P(n)}

Detection Query

Q, ={n : isDeclOrStmt(n) A 3cl, c2, cl != c2
A hasChild(n, cl) A hasSemType(cl,),
A hasChild(n, c2) A hasSemType(c2, “URL")

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 23

OWASP 2022
@ VIRTUAL
. N\PPS=C

JUN6-10

Exploitation Landscape: Attacker Models

Attacker Goal

* Forge HTTP requests by manipulating various
JavaScript input sources

JavaScript Input Sources
* Window URL
* Window Name

— | Web Attacker

* postMessages

* Doc. Referrer

n Functionality
° W r A
eb Storage — | Web Attacker
* HTML attributes | \‘l Injection Vuln.

Network Attacker

* Cookies ———

Vulnerable Webpage Target Server

Attacker Victim bank.com bank.com
[-+ com—
2 O @ o A
- XSRF- IIII::

=

URL: bank.com/#/payload

Vulnerable Webpage
bank.com

Target Server

attack.com bank.com

= “bank.com/#/
w = window.open(URL) ;

W.nName = ’

w.postMessage()

“bank.com”);

OWARSP 2022 ! J .
Vl RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Evaluation: Forgeable Requests

Vulnerable Webpage Target Server
Victim attack.com bank.com bank.com
: . . _0 _0 °.&
* Evaluated JAW with all webapps from the Bithami catalog 0 > ﬁ & E .= =

.,
H

bitnami
b 106 Webapps | nab L = “bank.com/#/
w = window.open(URL) ;
- 228M LoC - o S

w.postMessage(, “bank.com”);

A Detected 12,701 forgeable requests affecting 87 webapps Input Source # Forgeable # Apps
DOM.COOKIES 67 5
DOM.READ 12,268 83
Exploitations *_Storage 76 8
« Manually looked for practical exploitations in 516 requests DOC.REFERRER 1 1
POST-MESSAGE 8 8
@ Created exploits for 203 requests of seven webapps WIN.NAME 1 1
WIN.LOC 280 12
* E.g., SuiteCRM, Neos, Kibana, Modx

) Total Forgeable 12,701 87

* Account takeover, deleting user assets, ...
Total Requests 49,366 106

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 25

OWASP 2022 Everything You Wanted to Know About Client-si
VI RTU/\L (But Were Afraid

. \PPS=C

JUN6-10

Impact: SuiteCRM - Example 1/2
Vulnerability Simplied Snippet:

* URL hash fragment

* Example: ajaxUl = { ... };
util.Event.onContentReady('some-field', SUITE.ajaxUI.firstLoad); <:>

®* https://suitecrm.com#ajaxUILOC=URL

Attack ajaxUI.firstLoad = (){

url =|YAHOO.util.History.getBookmarkedState('ajaxUILoc’)} <:>
url = url ? url : 'index.php?module=Home&action=index’;
SUITE.ajaxUI.go|(url]; <:>

* Forge authenticated requests to any sensitive
endpoint

* Corrupt the database integrity

®* Delete accounts, contacts, cases, or tasks

ajaxUI.go = (location) {
con = YAHOO.util.Connect, ui = SUITE.ajaxUI;
ui.initHeader('X-Signature', 'CSRF_TOKEN');

con.asyncRequest('POST', [location |+ '&ajax_load=1', {...

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 26

(But Were Afraid tc

OWARSP 2022 Everything You Wanted to Know About Client-side
VIRTUAL i :

. \PPS=C

JUN6-10

Impact: Cotonti - Example 2/2

Simplied Snippet: QtON]

Vulnerability $(window) .on('hashchange', () {
* Use URL hash fragment as the endpoint of an ajaxLoad{window. location. hashl|. replace(/*
async HTTP requests e
* Control also the request method if(ﬁgzﬁL?idfﬁ‘?SE;SEI eptace(/~
m = hash.match(/"(|
Attack if (m) {
o Exarnpﬂe: url = m[3] > 0 ? m[3]: '/ajaxBase'; <:>
* https://cotonti.com/admin.php?m=config return ajaxSend({
#get;m=config&n=editso=plug&p=cleaners | Eﬁ%?ﬂ;gﬂlL ()

a=resetév=userprune&t=I1m

token: 'Token'

* Change administrative configuration

* e.g., delete inactive user accounts older than one
minute, delete logs, etc

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 27

OWASP 2022
@ VIRTUAL
. N\PPS=C

JUN6-10

Everything You Wanted to Know About Client-side CSRF

(But Were Afraid to Ask)

Anatomy of Forgeable Requests

* Exploitation landscape can be influenced by:

Type of controllable fields
Operation to forge a field

» Identified 25 distinct templates. For example:

185/ 516 requests: manipulate any part of domain + path + query
20/ 516 requests: manipulate multiple parts of path +
166/ 516 requests: manipulate a single part of

See our paper for more

Outgoing HTTP Request
Dom. Path Query Body | Part

Control

Total
Reqs Apps

v

v
v
v

NN S

ANEN
N SN NN
SNEENENCNEN SENEN
SENENEN AN N RN NEN

One
One
One
One
One
One
One
One
Mult
Mult
Mult
Mult
Mult
Mult
Mult
Mult
Mult

IHIJ

=

EEEEssEs000 00 E=S0000

) I IS IS I EPI PP ES EI I FI I D &

| T Y A A AL v N I v A B o A A A v A v e e o e e |

’

16 11

jorg
& w
N
[V

N
OO = WD

(%)

[y
o]
W

1
()1
2
1

[N R - = NV, (SRR JUI O IR, RN N I, N, W

Legend: A=Appending; P=Prepending; W=Writing.

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 28

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Evaluation: Contributions of New Models

Role of the Event Graph
* Event Dispatch Edges: 6,451,582 —_—
* Function Call Edges: 7,179,021

+89.8% in edges
transferring the control.

Importance of Symbolic Modeling

))) -60.3% LoC to process to
* Total of ~ 228M LoC of which ~ 138M are libraries — build the HPG
* Distinct library code only ~ 412K (335 times smaller)

Impact of Dynamic Snapshotting +7% forgeable requests

* Captured ~ 10.7M more nodes & ~ 13.3M more edges (i.e., dynamic insertion of script tags) +19.1% vulnerable apps

* Identification of 840 more forgeable requests in 14 webapps

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 29

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

JAW: Scalability and Performance

* Analysis time depends on lines of code and its complexity
* i.e., control and data dependencies
* Least time consuming: AST and Intra-procedural CFG generation

* Most time consuming: Semantic type propagation (i.e., data flow analysis)

100K < Loc <400k {7 IIE 1 cA:IS:é

. . . 50K <LoC < 100k 4| VN N PDG

Runtime Configuration B IPCG

10K <LoC <50K 4 |l I e
Ubuntu 18.04 on an iK<LoCc<10K{ [} B B Neo4j Preparation
Intel(R) Xeon(R) CPU E5-2695 v4 LoC < 1K 4 |I i Type Propagation
with 2.10 GHz and 72 cores, 252 GB RAM ' . . . I Detection Traversals
0 100 200 300 400
Seconds

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 30

OWASP 2022
@ VIRTUAL
. N\PPS=C

JUN6-10

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Client-side CSRF: Defenses

Problem:

/\ Misplaced trust in unsafe input components (e.g., URL)

Independent Requests
* Do not use JavaScript input sources to generate HTTP requests

* Use asafelist instead
* Apre-defined list of safe request data (e.g., endpoints)

®* Switch parameter from input to select an option from the list

M param=location.hash

/

PDG: Dpgram

M asyncRequest (param)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 31

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

Client-side CSRF: Defenses

Problem:
/\ Misplaced trust in unsafe input components (e.g., URL) HE' pazam—location.hash
sanitize (param) PDG: Dpgram
M asyncRequest (param)
Input Validation

* Validate JavaScript input sources before using them in security-sensitive requests
* Pre-define route structures and process URL params

* E.g., using modern client-side router libraries like Angular/Backbone/React

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 32

OWARSP 2022 1 J .
VI RTU/\L Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

. \PPS=C

JUN6-10

JAW: Security Analysis Beyond Client-side CSRF

» Support for additional vulnerability classes
* Possible to define your own semantic types
* Detecting taint-style vulnerabilities, e.g., client-side XSS

Q ={n : isDeclOrStmt(n) A 3Icl, c2, cl != c2
A hasChild(n, cl) A hasSemType(cl,),
A hasChild(n, c2) A hasSemType(c2, “sourceSemType”)

Data Collection Code - HPG Construction Traversals I T Result
0 Data - . Cod Code Lib Lib Svmboli 2 ootbooodloooo
o—=> E . : ode ibrary . ymbolic . : . .
" | . : Bpdadi N = > . Analysis .
: CLav el : St Values= Normalization Detection Modeling : HPG . 2 :
.............................. : Cod ! - - - (]
iTlT : i/ Sy Symbolic Model . X
HTTP(S) . State Values . . (s |
. = D RN — 1% R v
I Construction Graph : 300000000000 .

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 33

OWARSP 2022] A :
Everything You Wanted to Know About Client-side CSRF

VI RTLJ/\ L (But Were Afraid to Ask)

. N\PPS=C

JUN6-10

Conclusion O https://soheilkhodayari.github.io/JAW

Si OWRASI
VIRTUAL —— oursp20z2 N..... S
(But Were Afraid to Ask) APPSZC (But Were Afraid to Ask)

Evaluation: Forgeable Requests

Client-side CSRF: Vulnerability [r———
A o .
+ Evaluated JAW with all webapps from the Bitnami catalog 6] 64@? Eg, =

Vulnerable Webpage Target Server bitnami
icti * 106 webapps
Attacker Victim bank.com bank.com @ o
* 228MLoC v

E| @ +| o == A Detected 12,701 forgeable requests affecting 87 webapps Input Source. #Forgeable # Apps

'DOM.COOKIES 67 5

DOM.READ 12,268 83
Exploitations *Storage 76 8
+ Manually looked for practical exploitations in 516 requests DOC.REFERRER 1 1
POST-MESSAGE 8 8
| @ Created exploits for 203 requests of seven webapps | WIN.NAME 1 1
Root Cause: WIN.LOC 280 12
* E.g., SuiteCRM, Neos, Kibana, Modx
. Total Forgeable 12,701 87
* Account takeover, deleting user assets, ...
Total Requests 49366 106

& JavaScript progam uses attacker-controlled inputs to generate async HTTP requests

OWASP
Everything You Wanted to Know About Client-side CSRF-
(But Were Afraid to Ask)

OWASP
Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Client-side CSRF: Defenses

Approach Overview: JAW
* Ascalable, graph-based framework for detection and exploratory m Problem:
d param=location.hash

analysis of client-side CSRF vulnerabilities /\ Misplaced trust in unsafe input components (e.g., URL)

« Components
https://soheilkhodayari.github. sanitize (param) PDG: Dpgrom

* Data Collection Independent Requests

* Graph Construction * Do not use JavaScript input sources to generate HTTP requests

* Useasafelist instead asyncRequest (param)

* Apre-defined list of safe request data (e.g., endpoints)

"""""""""""" Traversals I Result * Switch parameter from input to select an option from the list

* Analysis Traversals

Code | Code Library | Lib Symbolic
Normalization Detection Modeling

SR,
: Code g
[— : st s
I Construction

Seed URL vl
 wpe Analysis

Input Validation
* Validate JavaScript input sources before using them in security-sensitive requests

* Pre-define route structures and process URL params
* Eg, using modern client-side router libraries like Angular/Backbone/React

Y7 @soheil__K Thank You!

