
PRESENTED BY: Soheil Khodayari

Everything You Wanted to Know
About Client-side CSRF (But Were
Afraid to Ask)

CISPA Helmholtz Center for Information Security

@Soheil__Ksoheil.khodayari@cispa.de

T ESTAB L E

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 2

Soheil Khodayari
PhD Candidate @CISPA, Germany (2019 – Present)
Web Security, Program Analysis

Double MSc. in Computer Science (2017-2019)
• Polytechnic University of Madrid - Technical University of Kaiserslautern
• R&D Engineer @IMDEA, Madrid

Publications in NDSS, USENIX Security, IEEE S&P, RAID

About Me

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 3

Web Applications Testability
• We know that webapp vulnerability detection is critical

• Over 4.8 billion websites online, 1.8 billion users [1]

• Contain a variety of security-sensitive data

• The complexity of webapps are rising

Banking Shopping Education

Existing vulnerability detection tools fall short of capturing this complexity

Problem:

Sources:
1 internetlivestats.com
2 nvd.nist.gov

Webapp CVEs By Year [2]

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 4

Cross-Site Request Forgery (CSRF)

1 2HTTP(S) WRITE

bank.comattack.comVictim

HTTP(S)

<script src=
“https://bank.com/transfer?amt=1000&
to=attacker”>

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 5

Cross-Site Request Forgery (CSRF)

1 2HTTP(S) WRITE

bank.comattack.comVictim

HTTP(S)

<script src=
“https://bank.com/transfer?amt=1000&
to=attacker”>

Do we know how to solve the CSRF attacks?

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 6

Anti-CSRF Defenses

Origin Checks
Referrer/Origin Check

Custom Request Headers

Req. Unguessability

Plain Token

HMAC Token

Double/Triple Submit

Cookie-less User Sessions

SOP for Cookies

SameSite Cookies

Freq. Log Outs (server)

Browser Extensions

Server-side Proxies

User Intention

Re-authentication

One-Time Token

(re)CAPTCHA

Robust CSRF defenses are well-known

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 7

Anti-CSRF Defenses

Origin Checks
Referrer/Origin Check

Custom Request Headers

Req. Unguessability

Plain Token

HMAC Token

Double/Triple Submit

Cookie-less User Sessions

SOP for Cookies

SameSite Cookies

Freq. Log Outs (server)

Browser Extensions

Server-side Proxies

User Intention

Re-authentication

One-Time Token

(re)CAPTCHA

Robust CSRF defenses are well-known

With these defenses properly implemented, are CSRF attacks solved?

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 8

Client-side CSRF: Vulnerability

Victim

1 2

Attacker

3

https://bank.com/#/transfer?amt=1000&to=attacker

bank.combank.com

XSRF-
TOKEN+

var uri = window.location.hash.substr(1);

if (uri.length > 0) {

uri = "bank.com/api" + uri;
let req = new asyncRequest("POST", uri);

req.setBody({"csrf_token" : "XSRF-TOKEN"});

// [...]
}

Target ServerVulnerable Webpage

JavaScript progam uses attacker-controlled inputs to generate async HTTP requests

Vuln.

Root Cause:

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 9

Client-side CSRF: Problem Statement

• Limited knowledge about client-side CSRF.
• Facebook in 20181

• Objective: studying client-side CSRF vulnerabilities

• (RQ1) Prevalence of client-side CSRF in webapps?

• (RQ2) Exploitations for different attacker models?

• (RQ3) Degree of attacker control?

• E.g., path, query, domain, body

1 Source: facebook.com/notes/996734990846339/

POST /path/file.php?q=v\r\n

Host: example.com\r\n

\r\n

{body}

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 10

Static Analysis (to the Rescue)

• Javascript
• Event-driven language
• Prototype-based inheritance (no static class hierarchies)
• Runtime types, coercions (no static type checking)

• Challenges
• Inherent dynamic language features

• E.g., eval(), or setTimeout() functions [S.H. Jensen, ISSTA'12]
• Pointer analysis (e.g., ThisExpressions like this.property) [S. Wei et. al., ECOOP'14], [B Stein et. al. PACMPL'19]
• Inter-procedural calls [G. Antal, SCAM'18]
• Minified scripts and obfuscated code

Analysis of client-side JavaScript programs is not an easy task

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 11

Static Analysis (Cont’d)
• Modeling JavaScript is not enough, code environment also matters

• ECMAScript standard library
• Browser APIs [S.H. Jensen, FSE'11]
• HTML DOM tree
• Client-side Events

• JavaScript streaming programming model [S. Guarnieri et. al., USENIX’10]

• Modern client-side libraries
• Sweet on the outside, bitter on the inside [M. Madsen et. al., FSE'13]
• E.g., JQuery, Dojo, YUI, etc

Around 250 abstract objects
with 500 properties
and 200 functions

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 12

Client-side CSRF: Exemplifying Detection Challenges

• (C1) Event-based transfer of control

• (C2) Dynamic web execution environment

• (C3) Modelling shared third-party code

function sendRequest() {
var uri = window.location.hash.substr(1)

fetch(uri ,{ method: "POST" })

extLibraryHttpRequest(uri ,{ method: "POST" })
// [...]

}

var invoice = document.querySelector('div')

invoice.addEventListener('LoadInvoice', sendRequest)
// [...]

function showInvoicePrice() {

// [...]
let invoice = document.getElementById(‘invoice-id')

invoice.dispatchEvent(new CustomEvent('LoadInvoice', {}))

}
// [...]

showInvoicePrice() 1

2

3

4

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 13

Other General Challenges for CSRF

• Detection Challenges

• Support for modern scanning barriers, e.g., login

• Scalability and performance

• Operational Challenges

• Side-effect free testing

• Security-relevant state changes

Access
Control

Crawling
Agent

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 14

Approach Overview: JAW
• A scalable, graph-based framework for detection and exploratory

analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

https://soheilkhodayari.github.io/JAW

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 15

Approach Overview: JAW
• A scalable, graph-based framework for detection and exploratory

analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

https://soheilkhodayari.github.io/JAW

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 16

JAW: Data Collection
• Chrome-based crawler with Selenium
• Enhanced with chrome extensions

• Outputs:
• JavaScript Code
• HTTP Requests and Responses
• Dynamically Fired Events
• Concrete snapshots of the global Window object

• window.document (DOM tree)
• window.localStorage

• window.document.cookie

• …

Dynamic Information

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 17

Approach Overview: JAW
• A scalable, graph-based framework for detection and exploratory

analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

https://soheilkhodayari.github.io/JAW

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 18

Hybrid Property Graphs (HPGs): Building Blocks

• Code Representation (Static)
• Abstract Syntax Tree (AST)
• Control Flow Graph (CFG)
• Program Dependence Graph (PDG)
• Inter-Procedural Call Graph (IPCG)
• Event Registration, Dispatch and Dependency Graph (ERDDG)
• Semantic Types and Symbolic Models

• State Values (Dynamic)
• Event Traces
• Environment Properties

CPG for C/C++
[Yamaguchi et al, S&P’14]

CPG for PHP
[Backes et al., EuroS&P’17]

HPG for
JavaScript

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 19

HPGs: Event Registration, Dispatch and Dependency Graph (ERDDG)

• Problem:
• Event dispatches can change the state of JavaScript programs
• Need to be modeled

• Solution:
• The ERDDG

Type: Dispatch

Type: Registration

Type: Dependency

Example Snippet:

1

2

3

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 20

HPGs: Symbolic Models and Semantic Types Propagation

• External libraries: over 60% of the total LoC of each webpage.
• Problem:

• Existing approaches: Inefficient, include library code in the analysis

• Idea: Shared models for JavaScript libraries

<script src=“lib.js”/>

Symbolic Model for lib.jsHPG for lib.js

URL
XMLHttpRequest()window.location.href

URL

libObject.href

extLibHttpRequest()
REQ

URL REQREQ
O~I

O<-I

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 21

Hybrid Property Graph: Example

Code Representation
(Static Part)

State Values
(Dynamic Part)

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 22

Approach Overview: JAW
• A scalable, graph-based framework for detection and exploratory

analysis of client-side CSRF vulnerabilities

• Components
• Data Collection
• Graph Construction
• Analysis Traversals

https://soheilkhodayari.github.io/JAW

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 23

Vulnerability Analysis

Q = {n : P(n)}• A query Q contains all nodes n of HPG for which a predicate P is true:

QA ={n : isDeclOrStmt(n) ∧ ∃c1, c2, c1 != c2
∧ hasChild(n, c1) ∧ hasSemType(c1, “REQ”),
∧ hasChild(n, c2) ∧ hasSemType(c2, “URL”)

}

• Client-side CSRF
A. Data flow from an attacker-controlled input to a param of a request R.

• lines of code having both “URL” and “REQ” semantic types.

B. R is reachable at page load.

• Model both conditions using declarative graph traversals

Detection Query

Exploitation Landscape: Attacker Models
Attacker Goal
• Forge HTTP requests by manipulating various

JavaScript input sources

JavaScript Input Sources
• Window URL
• Window Name
• postMessages
• Doc. Referrer

• Web Storage
• HTML attributes

• Cookies

attack.comVictim

XSRF-
TOKEN+

bank.com
Target Server

bank.com
Vulnerable Webpage

321

Functionality

Injection Vuln.

Network Attacker

Web Attacker

Web Attacker

URL: bank.com/#/payload

Victim

1 2

Attacker

XSRF-
TOKEN+

bank.com
Target Server

bank.com
Vulnerable Webpage

3

var URL = “bank.com/#/payload”;

var w = window.open(URL) ;
w.name = payload;

w.postMessage(payload, “bank.com”);

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 25

Evaluation: Forgeable Requests

• Evaluated JAW with all webapps from the Bitnami catalog
• 106 webapps
• 228M LoC

Exploitations
• Manually looked for practical exploitations in 516 requests

• E.g., SuiteCRM, Neos, Kibana, Modx
• Account takeover, deleting user assets, …

Input Source # Forgeable # Apps

DOM.COOKIES

DOM.READ

*-Storage

DOC.REFERRER

POST-MESSAGE

WIN.NAME

WIN.LOC

67

12,268

76

1

8

1

280

5

83

8

1

8

1

12

Total Forgeable

Total Requests

12,701

49,366

87

106

Detected 12,701 forgeable requests affecting 87 webapps

Created exploits for 203 requests of seven webapps

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 26

Impact: SuiteCRM - Example 1/2

// Step 2. `firstLoad` triggered
SUITE.ajaxUI.firstLoad = function(){

let url = YAHOO.util.History.getBookmarkedState('ajaxUILoc’);
url = url ? url : 'index.php?module=Home&action=index’;
SUITE.ajaxUI.go(url);

}

Vulnerability
• URL hash fragment
• Example:

• https://suitecrm.com#ajaxUILOC=URL

Attack
• Forge authenticated requests to any sensitive

endpoint
• Corrupt the database integrity

• Delete accounts, contacts, cases, or tasks

// Step 1. fire the `firstLoad` function when the document is ready
SUITE.ajaxUI = { ... };
YAHOO.util.Event.onContentReady('some-field', SUITE.ajaxUI.firstLoad);

// Step 3. `go` sends an async request
SUITE.ajaxUI.go = function(location) {

let con = YAHOO.util.Connect, ui = SUITE.ajaxUI;
ui.initHeader('X-Signature', 'CSRF_TOKEN');
con.asyncRequest('POST', location + '&ajax_load=1', {...}, null);

}

1

2

3

4

Simplied Snippet:

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 27

Impact: Cotonti - Example 2/2

Vulnerability
• Use URL hash fragment as the endpoint of an

async HTTP requests
• Control also the request method

Attack
• Example:

• https://cotonti.com/admin.php?m=config
#get;m=config&n=edit&o=plug&p=cleaner&
a=reset&v=userprune&t=1m

• Change administrative configuration
• e.g., delete inactive user accounts older than one

minute, delete logs, etc

function ajaxLoad(hash) {
if(hash != '') hash.replace(/^#/, '');
var m = hash.match(/^(get|post)(-.*?)?;(.*)$/);
if (m) {
// ajax bookmark
var url = m[3] > 0 ? m[3]: '/ajaxBase';

return ajaxSend({
method: m[1],
url: url,
token: 'Token'

});
}
// [...]

}

// Listen to hash change events
$(window).on('hashchange', function() {

ajaxLoad(window.location.hash.replace(/^#/, ''));
});

1

2

3

Simplied Snippet:

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 28

Anatomy of Forgeable Requests

• Exploitation landscape can be influenced by:
• Type of controllable fields
• Operation to forge a field

• Identified 25 distinct templates. For example:

• 185/ 516 requests: manipulate any part of domain + path + query

• 20/ 516 requests: manipulate multiple parts of path + body

• 166/ 516 requests: manipulate a single part of body

• See our paper for more

POST /path/file.php?q=v\r\n

Host: example.com\r\n

\r\n

{body}

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 29

Evaluation: Contributions of New Models

Role of the Event Graph
• Event Dispatch Edges: 6,451,582
• Function Call Edges: 7,179,021

Importance of Symbolic Modeling
• Total of ∼ 228M LoC of which ∼ 138M are libraries
• Distinct library code only ∼ 412K (335 times smaller)

Impact of Dynamic Snapshotting
• Captured ∼ 10.7M more nodes & ∼ 13.3M more edges (i.e., dynamic insertion of script tags)
• Identification of 840 more forgeable requests in 14 webapps

-60.3% LoC to process to
build the HPG

+89.8% in edges
transferring the control.

+7% forgeable requests
+19.1% vulnerable apps

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 30

JAW: Scalability and Performance

• Analysis time depends on lines of code and its complexity

• i.e., control and data dependencies

• Least time consuming: AST and Intra-procedural CFG generation

• Most time consuming: Semantic type propagation (i.e., data flow analysis)

Ubuntu 18.04 on an
Intel(R) Xeon(R) CPU E5-2695 v4
with 2.10 GHz and 72 cores, 252 GB RAM

Runtime Configuration

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 31

Client-side CSRF: Defenses

Independent Requests
• Do not use JavaScript input sources to generate HTTP requests
• Use a safelist instead

• A pre-defined list of safe request data (e.g., endpoints)
• Switch parameter from input to select an option from the list

Problem:
Misplaced trust in unsafe input components (e.g., URL)

PDG: Dparam

param=location.hash
URL

asyncRequest(param)REQ

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 32

Client-side CSRF: Defenses

Independent Requests
• Do not use JavaScript input sources to generate HTTP requests
• Use a safelist instead

• A pre-defined list of safe request data (e.g., endpoints)
• Switch parameter from input to select an option from the list

Input Validation
• Validate JavaScript input sources before using them in security-sensitive requests
• Pre-define route structures and process URL params

• E.g., using modern client-side router libraries like Angular/Backbone/React

Problem:
Misplaced trust in unsafe input components (e.g., URL)

PDG: Dparam

param=location.hash
URL

asyncRequest(param)REQ

sanitize(param)

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Soheil Khodayari - CISPA Helmholtz Center for Information Security | 33

JAW: Security Analysis Beyond Client-side CSRF

• Support for additional vulnerability classes
• Possible to define your own semantic types
• Detecting taint-style vulnerabilities, e.g., client-side XSS

Q ={n : isDeclOrStmt(n) ∧ ∃c1, c2, c1 != c2
∧ hasChild(n, c1) ∧ hasSemType(c1, “sinkSemType”),
∧ hasChild(n, c2) ∧ hasSemType(c2, “sourceSemType”)

}

Everything You Wanted to Know About Client-side CSRF
(But Were Afraid to Ask)

Conclusion https://soheilkhodayari.github.io/JAW

@Soheil__K Thank You!

